Answer:
b i think i dont see any dial caliper
Explanation:
Answer:
The work of the cycle.
Explanation:
The area enclosed by the cycle of the Pressure-Volume diagram of a Carnot engine represents the net work performed by the cycle.
The expansions yield work, and this is represented by the area under the curve all the way to the p=0 line. But the compressions consume work (or add negative work) and this is substracted fro the total work. Therefore the areas under the compressions are eliminated and you are left with only the enclosed area.
Answer:
a. 6 seconds
b. 180 feet
Explanation:
Images attached to show working.
a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero is when it stops.
b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.
Answer:
a) The additional time required for the truck to stop is <u>8.5 seconds</u>
b) The additional distance traveled by the truck is <u>230.05 ft</u>
Explanation:
Since the acceleration is constant, the average speed is:
(final speed - initial speed) / 2 = 0.75 v0
Since travelling at this speed for 8.5 seconds causes the vehicle to travel 690 ft, we can solve for v0:
0.75v0 * 8.5 = 690
v0 = 108.24 ft/s
The speed after 8.5 seconds is: 108.24 / 2 = 54.12 ft/s
We can now use the following equation to solve for acceleration:


a = -6.367 m/s^2
Additional time taken to decelerate: 54.12/6.367 = 8.5 seconds
Total distance traveled:

0 - 108.24^2 = 2 * (-6.367) * s
solving for s we get total distance traveled = 920.05 ft
Additional Distance Traveled: 920.05 - 690 = 230.05 ft