1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ahat [919]
3 years ago
7

9. A vehicle is having routine maintenance performed.

Engineering
1 answer:
dexar [7]3 years ago
8 0

Answer: b

Explanation:

You might be interested in
Describe with an example how corroded structures can lead to environment pollution? ​
raketka [301]
According to EonCoat, corrosion is the process of decay on a material caused by a chemical reaction with its environment. Corrosion of metal occurs when an exposed surface comes in contact with a gas or liquid, and the process is accelerated by exposure to warm temperature, acids, and salts.” (1)
Although the word ‘corrosion’ is used to describe the decay of metals, all natural and man-made materials are subject to decay, and the level of pollutants in the air can speed up this process.
5 0
3 years ago
We would like to measure the density (p) of an ideal gas. We know the ideal gas law provides p= , where P represents pressure, R
Nostrana [21]

Answer: =

Explanation:

=    P / (R * T) P- Pressure, R=287.058, T- temperature

From the given that

Sample mean(pressure) = 120300 Pa

Standard deviation (pressure) = 6600 Pa

Sample mean(temperature) = 340K

Standard deviation(temperature) = 8K

To calculate the Density;

Maximum pressure = Sample mean(pressure) + standard deviation (pressure) = 120300+6600 = 126900 Pa

Minimum pressure = Sample mean (pressure) - standard deviation (pressure)= 120300-6600 = 113700 Pa

Maximum temperature = Sample mean (temperature) + standard deviation (temperature) = 340+8 = 348K

Minimum temperature = Sample mean (temperature) - standerd deviation (temperature) = 340-8 = 332K

So now to calculate the density:

Maximum Density= Pressure (max)/(R*Temperature (min))= 126900/(287.058*332)= 1.331

Minimum density=Pressure(min)/(R*Temperature (max))= 113700/(287.058*348)= 1.138

Average density= (density (max)+ density (min))/2= (1.331+1.138)/2= 1.2345

cheers i hope this helps

5 0
4 years ago
A 2 in. diameter pipe supplying steam at 300°F is enclosed in a 1 ft square duct at 70°F. The outside of the duct is perfectly i
Shkiper50 [21]

Answer:

The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.

Explanation:

Diameter of pipe = 2 in = 0.0508 m

Steam temperature T_{1} = 300 F  = 422.04 K

Duct temperature T_{2} = 70 F = 294.26 K

Emmisivity of surface 1 = 0.79

Emmisivity of surface 2 = 0.276

Net emmisivity of both surfaces ∈ = 0.25

Stefan volazman constant \sigma = 5.67 × 10^{-8} \frac{W}{m^{2} K^{4}  }

Heat transfer  per foot length is given by

Q = ∈ \sigma A ( T_{1}^{4} - T_{2} ^{4} ) ------ (1)

Put all the values in equation (1) , we get

Q = 0.25 × 5.67 × 10^{-8} × 3.14 × 0.0508 × 1 × ( 422.04^{4} - 294.26^{4} )

Q = 54.78 Watt per foot.

This is the value of heat transferred watt per foot length.

4 0
3 years ago
Cynthia is producing a sculpture using material introduced in the Bronze Age. What two metals is she mixing?
Airida [17]
The correct answer
would be d
Iron and carbon
hope this helps
5 0
3 years ago
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
4 years ago
Other questions:
  • There are two piston-cylinder systems that each contain 1 kg of an idea gas at a pressure of 300 kPa and temperature of 350 K. T
    8·1 answer
  • Anyone have 11th grade engineering on odyssey ware?
    8·1 answer
  • A converging - diverging frictionless nozzle is used to accelerate an airstream emanating from a large chamber. The nozzle has a
    15·2 answers
  • When a conductor is moved in a magnetic field, a voltage will be induced on the conductor. However, current won't flow through t
    11·1 answer
  • Everyone has only one learning style. True or false? hurry pleasle this exp carees class
    11·1 answer
  • The current flowing into the collector lead of a certain bipolar junction transistor (BJT) is measured to be 1 nA. If no charge
    14·1 answer
  • ¿Por qué la lógica de proposiciones es conocida también como lógica de las proposiciones sin analizar?
    11·1 answer
  • Which option identifies why Ethan’s skills are valuable to his team in the following scenario?
    8·1 answer
  • The sum of forces on node 2 (upper-left) is ______.
    11·1 answer
  • Nec ________ covers selection of time-delay fuses for motor- overload protection.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!