1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
3 years ago
7

Which type of engineer often works with radar, communication, and navigation systems? electrical engineer chemical engineer indu

strial engineer materials engineer
Engineering
1 answer:
zzz [600]3 years ago
6 0

Answer:

electrical engineer

Explanation:

Electrical engineers design, develop, test, and supervise the manufacturing of electrical equipment, such as electric motors, radar and navigation systems, communications systems, or power generation equipment. Electrical engineers also design the electrical systems of automobiles and aircraft.

You might be interested in
Riding a bike is an example of a procedural memory.
Viefleur [7K]

Answer:

True reading a bike would be an example of procedural memory

4 0
3 years ago
Read 2 more answers
On the generalized enthalpy departure chart, the normalized enthalpy departure values seem to approach zero as the reduced press
Alekssandra [29.7K]

Answer:

Enthalpy is a function of pressure hence normalized enthalpy departure values will approach zero with reduced pressure approaching zero

Explanation:

On the generalized enthalpy departure chart, the normalized enthalpy departure values seem to approach zero as the reduced pressure PR approaches zero. this is because enthalpy is a function of pressure therefore as the Pressure is reducing towards the zero value, the gas associated with the pressure tends to behave more like an Ideal gas.

For an Ideal gas the Normalized enthalpy departure value will be approaching the zero value.

4 0
3 years ago
A plate (A-C) is connected to steelflat bars by pinsat A and B. Member A-E consists of two 6mm by 25mm parallel flat bars. At C,
juin [17]

Answer:

stress_ac = 5.333 MPa

shear stress_c = 1.763 MPa

Explanation:

Given:

- The missing figure is in the attachment.

- The dimensions of member AC = ( 6 x 25 ) mm x 2

- The diameter of the pin d = 19 mm

- Load at point A is P = 2 kN

Find:

-  Find the axial stress in AE and the shear stress in pin C.

Solution:

- The stress in member AE can be calculated using component of force P along the member AE  as follows:

                                    stress_ac = P*cos(Q) / A_ae

Where, Angle Q: A_E_B   and A_ac: cross sectional area of member AE.

                                    cos(Q) = 4 / 5   ..... From figure ( trigonometry )

                                    A_ae = 0.006*0.025*2 = 3*10^-4 m^2

Hence,

                                    stress_ae = 2*(4/5) / 3*10^-4

                                    stress_ae = 5.333 MPa

- The force at pin C can be evaluated by taking moments about C equal zero:

                                   (M)_c = P*6 - F_eb*3

                                      0 = P*6 - F_eb*3

                                      F_eb = 0.5*P

- Sum of horizontal forces for member AC is zero:

                                      P - F_eb - F_c = 0

                                      F_c = 0.5*P

- The shear stress of double shear bolt is given by an expression:

                                     shear stress = shear force / 2*A_pin

Where, The area of the pin C is:

                                     A_pin = pi*d^2 / 4

                                     A_pin = pi*0.019^2 / 4 = 2.8353*10^-4 m^2

Hence,

                                     shear stress = 0.5*P / 2*A_pin

                                     shear stress = 0.5*2 / 2*2.8353*10^-4

                                    shear stress = 1.763 MPa

7 0
3 years ago
What is engineering?
ANTONII [103]

Answer:

the branch of science and technology concerned with the design, building, and use of engines, machines, and structures. Anything that involves engines, wires, etc. basically

8 0
3 years ago
A 2-mm-diameter electrical wire is insulated by a 2-mm-thick rubberized sheath (k = 0.13 W/m ? K), and the wire/sheath interface
Svet_ta [14]

Question

A 2-mm-diameter electrical wire is insulated by a 2-mm-thick rubberized sheath (k = 0.13 W/m.K), and the wire/sheath interface is characterized by a thermal contact resistance of Rtc = 3E-4m².K/W. The convection heat transfer coefficient at the outer surface of the sheath is 10 W/m²K, and the temperature of the ambient air is 20°C.

If the temperature of the insulation may not exceed 50°C, what is the maximum allowable electrical power that may be dissipated per unit length of the conductor? What is the critical radius of the insulation?

Answer:

a. 4.52W/m

b. 13mm

Explanation:

Given

Diameter of electrical wire = 2mm

Wire Thickness = 2-mm

Thermal Conductivity of Rubberized sheath (k = 0.13 W/m.K)

Thermal contact resistance = 3E-4m².K/W

Convection heat transfer coefficient at the outer surface of the sheath = 10 W/m²K,

Temperature of the ambient air = 20°C.

Maximum Allowable Sheet Temperature = 50°C.

From the thermal circuit (See attachment), we my write

E'q = q' = (Tin,i - T∞)/(R'cond + R'conv)

= (Tin,i - T∞)/(Ln (r in,o / r in,i)/2πk + (1/(2πr in,o h)))

Where r in,i = D/2

= 2mm/2

= 1 mm

= 0.001m

r in,o = r in,i + t = 0.003m

T in, i = Tmax = 50°C

Hence

q' = (50 - 20)/[(Ln (0.003/0.001)/(2π * 0.13) + 1/(2π * 0.003 * 10)]

= 30/[(Ln3/0.26π) + 1/0.06π)]

= 30/[(1.34) + 5.30)]

= 30/6.64

= 4.52W/m

The critical radius is unaffected by the constant resistance.

Hence

Critical Radius = k/h

= 0.13/10

= 0.013m

= 13mm

5 0
3 years ago
Other questions:
  • The Stefan-Boltzmann law can be employed to estimate the rate of radiation of energy H from a surface, as in
    7·1 answer
  • What engineers call moment, scientists call
    9·1 answer
  • A heavy ball with a weight of 110 N is hung from the ceiling of a lecture hall on a 4.9-m-long rope. The ball is pulled to one s
    6·1 answer
  • What is electricity defined as
    10·1 answer
  • Hii I need help can someone help me
    15·1 answer
  • Suggest how the following requirements might be rewritten in a
    8·1 answer
  • What is the metal removal rate when a 2 in-diameter hole 3.5 in deep is drilled in 1020 steel at cutting speed of 120 fpm with a
    10·1 answer
  • Specify whether the statements are true or false.
    15·1 answer
  • Why does the ring on saturn spin
    13·2 answers
  • Jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!