Answer:
//Program was implemented using C++ Programming Language
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
unsigned int second_a(unsigned int n)
{
int r,sum=0,temp;
int first;
for(int i= 1; I<=n; i++)
{
first = n;
//Check if first digit is 3
// Remove last digit from number till only one digit is left
while(first >= 10)
{
first = first / 10;
}
if(first == 3) // if first digit is 3
{
//Check if n is palindrome
temp=n; // save the value of n in a temporary Variable
while(n>0)
{
r=n%10; //getting remainder
sum=(sum*10)+r;
n=n/10;
}
if(temp==sum)
cout<<n<<" is a palindrome";
else
cout<<n<<" is not a palindrome";
}
}
}
Explanation:
The above code segments is a functional program that checks if a number that starts with digit 3 is Palindromic or not.
The program was coded using C++ programming language.
The main method of the program is omitted.
Comments were used for explanatory purpose.
Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely
Answer:
The temperature attains equilibrium with the surroundings.
Explanation:
When the light bulb is lighted we know that it's temperature will go on increasing as the filament of the bulb has to constantly dissipates energy during the time in which it is on. Now this energy is dissipated as heat as we know it, this heat energy is absorbed by the material of the bulb which is usually made up of glass, increasing it's temperature. Now we know that any object with temperature above absolute zero has to dissipate energy in form of radiations.
Thus we conclude that the bulb absorbs as well as dissipates it's absorbed thermal energy. we know that this rate is dependent on the temperature of the bulb thus it the temperature of the bulb does not change we can infer that an equilibrium has been reached in the above 2 processes i.e the rate of energy absorption equals the rate of energy dissipation.
Steady state is the condition when the condition does not change with time no matter whatever the surrounding conditions are.