Answer:
Explanation:
A woman walks due west on the deck of a ship at 3 miyh.The ship is moving north at a speed of 22 miyh.Find the speed and direction of the woman relative to the surface of the water.
Answer: The exit temperature of the gas in deg C is .
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa,
We know that for an ideal gas the mass flow rate will be calculated as follows.
or, m =
=
= 10 kg/s
Now, according to the steady flow energy equation:
= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
=
Therefore, we can conclude that the exit temperature of the gas in deg C is .
Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂
The heat supplied = × Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied = ·
= 20 kg/s
The heat supplied = 20* = 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K
T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust = × = 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.
Answer:
0.4 gallons per second
Explanation:
A function shows the relationship between an independent variable and a dependent variable.
The independent variable (x values) are input variables i.e. they don't depend on other variables while the dependent variable (y values) are output variables i.e. they depend on other variables.
The rate of change or slope or constant of proportionality is the ratio of the dependent variable (y value) to the independent variable (x value).
Given that the garden hose fills a 2-gallon bucket in 5 seconds. The dependent variable = g = number of gallons, the independent variable = t = number of seconds.
Constant of proportionality = g / t = 2 / 5 = 0.4 gallons per second