Given :
Initial speed , u = 0 m/s .
Final speed , v = 91 km/h = 25.28 m/s .
To Find :
a) Average acceleration .
b ) Assuming the motorcycle maintained a constant acceleration, how far is it from the traffic light after 3.3 s .
Solution :
a )
We know ,by equation of motion :
b)
Also , by equation of motion :
Hence , this is the required solution .
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Nuclear reactions are the reactions in which nucleus of an atom changes either by splitting or joining with the nucleus of another atom.
There are two types of nuclear reactions.
- Nuclear fission - In this process, large atomic nuclei splits into smaller nuclei.
- Nuclear fusion - In this process, two small nuclei combine together to form a large nuclei.
Both nuclear fission and fusion processes involve nuclei of atoms.
For example,
Thus, we can conclude that statements which are true are as follows.
- Nuclear reactions involve the nuclei of atoms.
- The products of nuclear reactions are lighter than the reactants.
The height of the oil column above the water in the vessel is determined as 2 cm.
<h3>
Pressure of the vessel</h3>
The pressure of the vessel due to water, oil and silver poured into the vessel is determined from mercury column.
let level of mercury = 20 cm + 0.5 cm = 20.5 cm
20.5 cmHg = 205 mmHg
1 mmHg = 133.32 Pa
205 mmHg = 27,330.6 Pa
<h3>Height of the liquids in the vessel</h3>
P = ρgh
where;
ρ is the density of water, oil and silver respectively
ρ = 1000 kg/m³ + 881 kg/m³ + 10,800 kg/m³ = 12,681 kg/m³
h = P/(ρg)
h = (27,330.6) / (12,681 x 9.8)
h = 0.22 m
h = 22 cm
<h3>Height of oil column</h3>
Oil is less dense than water and will float on water.
Height of oil column = 22 cm - 20 cm = 2 cm
Learn more about density here: brainly.com/question/6838128
#SPJ1
Answer:
D. 48.985 N
Explanation:
Newton's second law states that:
which means that the net force acting on an object is equal to the product between the object's mass and its acceleration.
The equation of the forces for the briefcase in the elevator therefore is given by:
where
N is the normal reaction exerted on the briefcase
(mg) is the weight of the briefcase, with
m = 4.5 kg being its mass
g = 9.8 m/s^2 is the acceleration of gravity
a = 1.10 m/s^2 is the acceleration
Here we chose upward as positive direction.
Solving for N, we find the normal force:
So the closest answer is
D. 48.985 N