Answer:
7.46 J/kg/K
Explanation:
The heat absorbed or lost is:
q = mCΔT
where m is the mass, C is the heat capacity, and ΔT is the change in temperature.
Given q = 15.0 J, m = 0.201 kg, and ΔT = 10.0 °C:
15.0 J = (0.201 kg) C (10.0 °C)
C = 7.46 J/kg/°C
Which is the same as 7.46 J/kg/K.
Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Well, electrons can be converted into a atomic number so if SE atomic number is 34 that means it has 34 electrons. AI has a atomic number of 13 meaning it has 13 electrons.
So the difference is that SE has more electrons then AI.
Hope this helped. :D