1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
3 years ago
13

When Kevin pulls his cotton shirt off his body, the electrons get transferred from the (shirt or body) to the (shirt or body) .

So, the shirt becomes (positively or negatively) charged and Kevin’s body becomes (positively or negatively) charged.
Physics
1 answer:
Masja [62]3 years ago
6 0
<span>When Kevin pulls his cotton shirt off his body, the electrons get transferred from the shirt (in form of static charges i.e. electrons to the body. So, the shirt becomes positively charged and Kevin’s body becomes negatively charged.

As a result of charge transfer from the shirt to the body, we can hear a crackling sound. or if observed in dark, a sparkle can be seen.</span>
You might be interested in
A block of mass 20 kg sits on a ramp with an angle of 31 degrees above the horizontal. Assuming no friction, how fast will the b
Artyom0805 [142]

Answer:

2.98 m/s^2

Explanation:

I have done this before and it was a question on my physics test

4 0
3 years ago
Read 2 more answers
A book is to be produced with pages of thickness 0.125mm.If the book is to be exactly 1cm thick what is the maximum number of pa
miskamm [114]

Answer:

1cm=10mm

10cm/0.125mm

80pages

5 0
2 years ago
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it i
lianna [129]

Answer:

<em>A) the moment of inertia of the system decreases and the angular speed increases. </em>

Explanation:

The complete question is

A merry-go-round spins freely when Diego moves quickly to the center along a radius of the  merry-go-round. As he does this, It is true to say that

A) the moment of inertia of the system decreases and the angular speed increases.

B) the moment of inertia of the system decreases and the angular speed decreases.

C) the moment of inertia of the system decreases and the angular speed remains the same.

D) the moment of inertia of the system increases and the angular speed increases.

E) the moment of inertia of the system increases and the angular speed decreases

In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as

I_{1} w_{1} = I_{2} w_{2}    ....1

where I_{1} and I_{2} are the initial and final moment of inertia respectively.

and w_{1} and w_{2} are the initial and final angular speed respectively.

Also, we know that the moment of inertia of a rotating body is given as

I = mr^{2}    ....2

where m is the mass of the rotating body,

and r is the radius of the rotating body from its center.

We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.

From equation 1, we see that in order for the angular momentum to be conserved, the decrease from I_{1} to I_{2} will cause the angular speed of the system to increase from w_{1} to w_{2} .

From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.

7 0
3 years ago
An electron moves at a speed of 1.0 x 104 m/s in a circular path of radius 2 cm inside a solenoid. The magnetic field of the sol
iogann1982 [59]

Answer:

(a) B = 2.85 × 10^{-6} Tesla

(b) I =  I = 0.285 A

Explanation:

a. The strength of magnetic field, B, in a solenoid is determined by;

r = \frac{mv}{qB}

⇒ B = \frac{mv}{qr}

Where: r is the radius, m is the mass of the electron, v is its velocity, q is the charge on the electron and B is the magnetic field

B = \frac{9.11*10^{-31*1.0*10^{4} } }{1.6*10^{-19}*0.02 }

  = \frac{9.11*10^{-27} }{3.2*10^{-21} }

B = 2.85 × 10^{-6} Tesla

b. Given that; N/L = 25 turns per centimetre, then the current, I, can be determined by;

B = μ I N/L

⇒    I = B ÷ μN/L

where B is the magnetic field,  μ is the permeability of free space = 4.0 ×10^{-7}Tm/A, N/L is the number of turns per length.

I = B ÷ μN/L

 = \frac{2.85*10^{-6} }{4*10^{-7} *25}

I = 0.285 A

5 0
3 years ago
Four springs with the following spring constants, 113.0 N/m, 65.0 N/m, 102.0 N/m, and 101.0 N/m are connected in series. What is
Llana [10]

Answer:

K_e_q=22.75878093\frac{N}{m}

f=1.363684118Hz

Explanation:

In order to calculate the equivalent spring constant we need to use the next formula:

\frac{1}{K_e_q} =\frac{1}{K_1} +\frac{1}{K_2} +\frac{1}{K_3} +\frac{1}{K_4}

Replacing the data provided:

\frac{1}{K_e_q} =\frac{1}{113} +\frac{1}{65} +\frac{1}{102} +\frac{1}{101}

K_e_q=22.75878093\frac{N}{m}

Finally, to calculate the frequency of oscillation we use this:

f=\frac{1}{2(pi)} \sqrt{\frac{k}{m} }

Replacing m and k:

f=\frac{1}{2(pi)} \sqrt{\frac{22.75878093}{0.31} } =1.363684118Hz

4 0
3 years ago
Other questions:
  • Can someone tell me what my displacement is?
    14·1 answer
  • at room temperature, iron is a solid and mercury is a liquid. based on this information we can infer thata. iron has a higher bo
    15·2 answers
  • Which is a warning sign that someone needs the help of a mental health professional
    11·2 answers
  • How is work related to energy?​
    6·2 answers
  • Car A has a mass of 2000 kg and is going 28 m/s east.
    15·1 answer
  • A grandfather clock works by swinging a pendulum back and forth with a
    5·1 answer
  • Do you think you must have a tree of your?<br> ​
    14·1 answer
  • How 2cos theta ×sin theta is =sin2theta
    6·1 answer
  • Which type of energy resource can be replaced in a short amount of time? 15 Points
    13·1 answer
  • If a measurement is 4.2 cm and its possible error is 0.04 cm, the relative error is?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!