Answer:
B.) a stretched rubber band
Explanation:
-
Answer:
The mass of unknown object is 8.62Kg
Explanation:
To develop this problem it is necessary to apply the equations related to the Drag force and the Force of Gravity.
For the given point, that is, the moment at which the terminal velocity is reached, the two forces equalize, that is,

By definition we know that the Drag force is defined as

Where,
Drag coefficient
Density
A =Cross-sectional Area
V = Velocity
In the other hand we have,

Where,
Mass of sphere
Mass of unknown object
Equating the two equations we have to

Re-arrange for m_2,

Our values are given by,






Replacing in the equation we have,


<em>Therefore the mass of unknown object is 8.62Kg</em>
Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
Thick lens will have shorter and consequently thin lens will have greater focal length. Because, For a thick lens, the optical path length of the light is more, than for a thin lens, thus, the bending of light will be more in case of a thicker lens. Consequently, it has a shorter focal length.