First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
For the answer to the question above,
<span>There is nothing in the equations to suggest that the string moves in the x direction so D) v_x(x,t)=0.
</span>
y(x,t) = A sin(kx-omega t)
d{y(x,t)}/d{x} = A k cos(kx - omega t)
:<span> </span><span>Under the assumption that a cell is made up of two concentric spheres you find the surface are of the inside sphere which will be your A.
You already have your separation and dielectric constant so just use the formula you stated towards the end of your question and you get 8.93x10^-11 Farads which is about 89pF</span>
B, larceny because that's theft of personal property.
Answer:
make a parachute out of the bag connecting to a bowl made out of paper filled with cotton balls. then put the egg in the bowl.
Explanation: