Answer:
, pfx = pix + Jx.
Explanation:
The momentum principle tells us that impulse transfers momentum to an object.
If an object has 2 kgm/s of momentum, a 1 kgm/s impulse delivered to the object
increases its momentum to 3 kgm/s. That is, pfx = pix + Jx.
Just as we did with energy, we can represent this “momentum accounting” with a
momentum bar chart. For example, the bar chart of FIGURE 11.6 represents the ball
colliding with a wall in Figure 11.4. Momentum bar charts are a tool for visualizing
an interaction
Answer: Δθ = 127.4 K
Explanation: by using the law of conservation of energy, the kinetic energy of the bullet equals the heat energy on the plate.
Kinetic energy of bullet = mv²/2
Heat energy = mcΔθ
Where m = mass of bullet = 0.09kg, v = velocity of bullet = 182 m/s, c = specific heat capacity of lead bullet = 130 j/kgk
Δθ = change in temperature
mv²/2 = mcΔθ
With 'm' on both sides of the equation, they cancel out each other, hence we have that
v²/2 = cΔθ
v² = 2cΔθ
Δθ= v²/2c
Δθ = (182)²/2×130
Δθ = 33124/260
Δθ = 127.4 K
The answer is d. experiment
Answer:
the direction of the velocity is downward and the acceleration decreases throughout the motion
Explanation:
since the gradient is negative it is decelerating
Neon has 8 electrons in it's valence shell.
So, option A is your answer.
Hope this helps!