Answer:
See the explanation below.
Explanation:
The units of work are consistent since if we work in the international system of measures we have the following dimensional quantities for velocity, distance and time.
s = displacement [m]
v and u = velocity [m/s]
t = time [s]
Now using these units in the given equation.
![s = 0.5*([m/s]+[m/s])*[s]\\s=0.5*[m/s]*[s]\\s = 0.5*[m]](https://tex.z-dn.net/?f=s%20%3D%200.5%2A%28%5Bm%2Fs%5D%2B%5Bm%2Fs%5D%29%2A%5Bs%5D%5C%5Cs%3D0.5%2A%5Bm%2Fs%5D%2A%5Bs%5D%5C%5Cs%20%3D%200.5%2A%5Bm%5D)
So the expression is good, and dimensional has consistency.
Answer:
I hope 2 amperes of current passes
Answer:
Time taken, 
Explanation:
It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.
From the figure,
The sum of forces in y direction is :


Sum of forces in x direction,

.............(1)
Also, 
Equation (1) becomes :

...............(2)
Let t is the time taken for the ball to rotate once around the axis. It is given by :

Put the value of T from equation (2) to the above expression:


On solving above equation :

Hence, this is the required solution.
Answer:
k = 26.25 N/m
Explanation:
given,
mass of the block= 0.450
distance of the block = + 0.240
acceleration = a_x = -14.0 m/s²
velocity = v_x = + 4 m/s
spring force constant (k) = ?
we know,
x = A cos (ωt - ∅).....(1)
v = - ω A cos (ωt - ∅)....(2)
a = ω²A cos (ωt - ∅).........(3)

now from equation (3)



k = 26.25 N/m
hence, spring force constant is equal to k = 26.25 N/m