The units for molarity is moles of solute per liter of solution which means if you multiply the molarity of a solution by its volume you get how many moles of solute are in the solution. (0.75Mx0.5L=0.375mol NaCl)
Then you can multiply the moles of sodium chloride (0.375 mol) by its molar mass (58.45 g/mol) to get 21.92g of sodium chloride. That means there is 21.92 grams of sodium chloride in 500mL of 0.75M solution. I hope this helps. Let me know if anything is unclear.
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Answer:
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, for the described situation, we infer that calcium reacts with fluoride ions to yield insoluble calcium fluoride as shown below:

Which is typically an equilibrium reaction, since calcium fluoride is able to come back to the ions. In such a way, since the maximum amount is computed via stoichiometry, we can see a 1:2 mole ratio between the ions, therefore, the required maximum amount of fluoride ions in the "hard" water (assuming no other ions) turns out:
![[F^-]_{max}=2.0x10^{-3}\frac{molCa^{2+}}{L}*\frac{2molF^-}{1molCa^{2+}} \\](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D2.0x10%5E%7B-3%7D%5Cfrac%7BmolCa%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B2molF%5E-%7D%7B1molCa%5E%7B2%2B%7D%7D%20%20%5C%5C)
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Best regards.
Answer:
the answer is B.Construction
Explanation: