Answer:
The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.
Explanation:
Answer:
n=2.32
w= -213.9 KW
Explanation:


Mass of air=1 kg
For polytropic process
,n is the polytropic constant.



n=2.32
Work in polytropic process given as
w=
w=
Now by putting the values
w=
w= -213.9 KW
Negative sign indicates that work is given to the system or work is done on the system.
For T_V diagram
We can easily observe that when piston cylinder reach on new position then volume reduces and temperature increases,so we can say that this is compression process.
Answer:
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Explanation:
given data
pressure p1 = 1.4 MPa = 14 bar
temperature t1 = 32°C
exit pressure = 0.08 MPa = 0.8 bar
to find out
the quality of the refrigerant exiting the expansion valve
solution
we know here refrigerant undergoes at throtting process so
h1 = h2
so by table A 14 at p1 = 14 bar
t1 ≤ Tsat
so we use equation here that is
h1 = hf(t1) = 332.17 kJ/kg
this value we get from table A13
so as h1 = h2
h1 = h(f2) + x(2) * h(fg2)
so
exit quality = 
exit quality = 
so exit quality = 0.2337 = 23.37 %
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Answer:
a = 1.68m/
Explanation:
Please kindly find the attached file for explanations
Answer:
Percentage change 5.75 %.
Explanation:Given ;
Given
Pressure of condenser =0.0738 bar
Surface temperature=20°C
Now from steam table
Properties of steam at 0.0738 bar
Saturation temperature corresponding to saturation pressure =40°C
So Δh=2573.5-167.5=2406 KJ/kg
Enthalpy of condensation=2406 KJ/kg
So total heat=Sensible heat of liquid+Enthalpy of condensation

Total heat =4.2(40-20)+2406
Total heat=2,544 KJ/kg
Now film coefficient before inclusion of sensible heat



Now film coefficient after inclusion of sensible heat



=5.75 %
So Percentage change 5.75 %.