Answer:
Step-by-step explanation:
x-y=7
-3x+9y=-39
Divide the second equation by 3
-x +3y = -13
Add this to the first equation
x-y=7
-x +3y = -13
----------------------
0x +2y = -6
Divide by 2
2y/2 = -6/2
y = -3
Now find x
x-y = 7
x -(-3) = 7
x+3 = 7
Subtract 3 from each side
x = 4
(4,-3)
Or by substitution
x-y=7
solve for x
x = 7+y
-3x+9y=-39
Substitute y+7 in for x
-3(7+y) +9y = -39
Distribute
-21 -3y +9y = -39
Combine like terms
-21 +6y = -39
Add 21 to each side
6y = -18
Answer:
Step-by-step explanation:
I don’t know sorry
Solution is where the 2 lines intersect
I would say the answer is 3rd option, whre both lines pass through that point
Answer: You simplify it.
Step-by-step explanation: You have to take the numerator and the denominator, find the greatest common factor, and divide it until it is at its simplest form.
Hope that helps
Isolate the root expression:
![\sqrt[3]{x+1}+2=0\implies\sqrt[3]{x+1}=-2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%2B1%7D%2B2%3D0%5Cimplies%5Csqrt%5B3%5D%7Bx%2B1%7D%3D-2)
Take the third power of both sides:
![\sqrt[3]{x+1}=-2\implies(\sqrt[3]{x+1})^3=(-2)^3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%2B1%7D%3D-2%5Cimplies%28%5Csqrt%5B3%5D%7Bx%2B1%7D%29%5E3%3D%28-2%29%5E3)
Simplify:
![(\sqrt[3]{x+1})^3=(-2)^3\implies x+1=-8](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7Bx%2B1%7D%29%5E3%3D%28-2%29%5E3%5Cimplies%20x%2B1%3D-8)
Isolate and solve for

:

Since the cube root function is bijective, we know this won't be an extraneous solution, but it doesn't hurt to verify that this is correct. When

, we have
![\sqrt[3]{-9+1}=\sqrt[3]{-8}=\sqrt[3]{(-2)^3}=-2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-9%2B1%7D%3D%5Csqrt%5B3%5D%7B-8%7D%3D%5Csqrt%5B3%5D%7B%28-2%29%5E3%7D%3D-2)
as required.