Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We have following information:
m₁=3 kg
m₂=? kg
v₁=x m/s
v₂=0 m/s
v'1 = v'2 = 1/3 * v₁
Now we insert given information and solve for m₂:
3*v₁ + 0*? = 3*1/3*v₁ + m₂*1/3*v₁
3v₁ = v₁ + m₂*1/3*v₁
2v₁ = m₂*1/3*v₁
2 = m₂*1/3
m₂= 6kg
Mass of second mud ball is 6kg.
Answer:
410.4J
Explanation:
Step one:
given
mass= 3.35kg
weight= 3.35*9.81= 32.86N
h=12.49m
Required
The net work done
Step two:
the work done is given as
WD= force* distance
WD= 32.86*12.49
WD= 410.4J
1. The property of a conductor by virtue of which it posses the flow of electric current through it is called resistance.
2. The resistance of a conductor depends on the cross sectional area of the conductor and it's resistivity.
3.This id due to the fact that the resistance of a wire is inversely proportional to the square of its diameter.
4.Due to at high temperatures , the alloy donot oxidize. Alloy doesn't melt readily and get deformed.
The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.