1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
6

A pendulum is set in motion and time. The time measured for 20 complete swings is 308.

Physics
1 answer:
laiz [17]3 years ago
6 0

Answer:

<em><u>solution</u></em>

<em>3</em><em>0</em><em>8</em><em>=</em><em>2</em><em>0</em><em> </em><em>swings</em><em> </em>

<em> </em><em>?</em><em>:</em><em>:</em><em>:</em><em> </em><em>=</em><em>1</em>

<em>(</em><em> </em><em>3</em><em>0</em><em>8</em><em>×</em><em>1</em><em>)</em><em>÷</em><em>2</em><em>0</em>

<em>3</em><em>0</em><em>8</em><em>÷</em><em>2</em><em>0</em>

<em>1</em><em>5</em><em>4</em><em>÷</em><em>1</em><em>0</em>

<em>=</em><em>1</em><em>5</em><em>.</em><em>4</em>

<em>=</em>15.4

You might be interested in
When you hold a cold glass of water in your warm hand, which way does the heat flow ?
Tanya [424]

Heat flows naturally from a warmer object (higher energy) to a cooler one (lower energy).

6 0
3 years ago
"a grindstone of radius 4.0 m is initially spinning with an angular speed of 8.0 rad/s. the angular speed is then increased to 1
kotegsom [21]

The average angular speed of the grindstone is 10 rad/s

\texttt{ }

<h3>Further explanation</h3>

<em>Let's recall </em><em>Angular Speed</em><em> formula as follows:</em>

\boxed{ \omega = \omega_o + \alpha t }

\boxed{ \theta = \omega_o t + \frac{1}{2} \alpha t^2 }

\boxed{ \omega^2 = \omega_o^2 + 2 \alpha \theta }

\boxed{ \theta = \frac{( \omega + \omega_o )}{2} t }

<em>where :</em>

<em>ω = final angular speed ( rad/s )</em>

<em>ω₀ = initial angular speed ( rad/s )</em>

<em>α = angular acceleration ( rad/s² )</em>

<em>t = elapsed time ( s )</em>

<em>θ = angular displacement ( rad )</em>

\texttt{ }

<u>Given:</u>

radius of the grindstone = R = 4.0 m

initial angular speed = ω₀ = 8.0 rad/s

final angular speed = ω = 12 rad/s

elapsed time = t = 4.0 seconds

<u>Asked:</u>

average angular speed = ?

<u>Solution:</u>

<em>Firstly , we will calculate </em><em>angular displacement </em><em>as follows:</em>

\theta = \frac{( \omega + \omega_o )}{2} t

\theta = \frac{ ( 12 + 8.0 ) }{2} \times 4.0

\theta = 10 \times 4.0

\boxed {\theta = 40 \texttt{ rad}}

\texttt{ }

<em>Next , we could calculate the </em><em>average angular speed</em><em> as follows:</em>

\texttt{average angular speed} = \theta \div t

\texttt{average angular speed} = 40 \div 4.0

\boxed{\texttt{average angular speed} = 10 \texttt{ rad/s}}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Moment of Inertia : brainly.com/question/13796477
  • The Ratio of the Moments of Inertia : brainly.com/question/2176655

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Rotational Dynamics

4 0
3 years ago
Read 2 more answers
Help pls ... will give brainlist
Ghella [55]
I, i’m pretty sure sorry if it’s wrong
6 0
3 years ago
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent
azamat

The wavelengths of the constituent travelling waves CANNOT be 400 cm.

The given parameters:

  • <em>Length of the string, L = 100 cm</em>

<em />

The wavelengths of the constituent travelling waves is calculated as follows;

L = \frac{n \lambda}{2} \\\\n\lambda = 2L\\\\\lambda = \frac{2L}{n}

for first mode: n = 1

\lambda = \frac{2\times 100 \ cm}{1} \\\\\lambda = 200 \ cm

for second mode: n = 2

\lambda = \frac{2L}{2} = L = 100 \ cm

For the third mode: n = 3

\lambda = \frac{2L}{3} \\\\\lambda = \frac{2 \times 100}{3} = 67 \ cm

For fourth mode: n = 4

\lambda = \frac{2L}{4} \\\\\lambda = \frac{2 \times 100}{4} = 50  \ cm

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.

The complete question is below:

A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:

A. 400 cm

B. 200 cm

C. 100 cm

D. 67 cm

E. 50 cm

Learn more about wavelengths of travelling waves here: brainly.com/question/19249186

5 0
3 years ago
Daniel takes his two dogs, Pauli the Pointer and Newton the Newfoundland, out to a field and lets them loose to exercise. Both d
DedPeter [7]

Answer:

Explanation:

3.4 m/s due North, -1.1 m/s due East

7 0
4 years ago
Other questions:
  • A cannonball is launched from the ground at an angle of 30 degrees above the horizontal and a speed of 30 m/s. Ideally (no air r
    12·1 answer
  • Which is an advantage of AC over DC power?
    10·2 answers
  • 10) The closest star to the earth (other than
    12·1 answer
  • How does earths atmispher help it to sustain life
    7·1 answer
  • Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How f
    6·1 answer
  • Suppose you are driving a car around in a circle of radius 212 ft, at a velocity which has the constant magnitude of 43 ft/s. A
    9·1 answer
  • A man seeking to set a world record wants to tow a 101,000-kg airplane along a runway by pulling horizontally on a cable attache
    11·1 answer
  • A voltage of 18 V is applied across the ends of a piece of copper wire 8 cm long. The mass of an electron is 9.11 x 10kg and its
    11·1 answer
  • What is the pressure transmitted in the liquid on a hydraulic pump where an elephant with a weight of 40 000 N is placed on top
    14·1 answer
  • How long does it take a 5kW shower to use 25000J of energy?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!