Step-by-step explanation:
plz refer the attachment
Part A:
Let the length of one of the sides of the rectangle be L, then the length of the other side is obtained as follow.
Let the length of the other side be x, then

Thus, if the length of one of the side is x, the length of the other side is 8 - L.
Hence, the area of the rectangle in terms of L is given by

Part B:
To find the domain of A
Recall that the domain of a function is the set of values which can be assumed by the independent variable. In this case, the domain is the set of values that L can take.
Notice that the length of a side of a rectangle cannot be negative or 0, thus L cannot be 8 as 8 - 8 = 0 or any number greater than 8.
Hence the domain of the area are the set of values between 0 and 8 not inclusive.
Therefore,
Answer
75r^4 t^2 + 25r^4 t^6
Answer:
P ( -1 < Z < 1 ) = 68%
Step-by-step explanation:
Given:-
- The given parameters for standardized test scores that follows normal distribution have mean (u) and standard deviation (s.d) :
u = 67.2
s.d = 4.6
- The random variable (X) that denotes standardized test scores following normal distribution:
X~ N ( 67.2 , 4.6^2 )
Find:-
What percent of the data fell between 62.6 and 71.8?
Solution:-
- We will first compute the Z-value for the given points 62.6 and 71.8:
P ( 62.6 < X < 71.8 )
P ( (62.6 - 67.2) / 4.6 < Z < (71.8 - 67.2) / 4.6 )
P ( -1 < Z < 1 )
- Using the The Empirical Rule or 68-95-99.7%. We need to find the percent of data that lies within 1 standard about mean value:
P ( -1 < Z < 1 ) = 68%
P ( -2 < Z < 2 ) = 95%
P ( -3 < Z < 3 ) = 99.7%
Answers and work is written in the picture. Hope this helps!!