Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
Answer:
a.) the speed at the bottom is greater for the steeperhill
Explanation:
since the energy at the bottom of the steeper hilis greater

As we can see from above that v is higher when h ishigher.
Answer:
μ =tanθ
Explanation:=
The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.
μ=tanθ
v = x/t
v = average velocity, x = displacement, t = elapsed time
Given values:
x = 6km south, t = 60min
Plug in and solve for v:
v = 6/60
v = 0.1km/min south