According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.
Answer:
B protons determine indentity and valence electrons determine chemical properties.
:)
Explanation:
The mass of carbon dioxide that would be made by reacting 30 grams C2H6 with 320 grams O2 will be 80 grams
From the balanced equation of the reaction:

The mole ratio of C2H6 to O2 is 2:7.
- Mole of 30 grams C2H6 = mass/molar mass
= 30/30
= 1 mole
- Mole of 320 grams O2 = 320/32
= 10 moles
Thus, C2H6 is the limiting reactant.
Mole ratio of C2H6 to CO2 according to the equation = 1:2
Since the mole of C2H6 is 1, the equivalent mole of CO2 would, therefore, be 2.
Mass of 2 moles CO2 = mole x molar mass
= 2 x 44
= 88 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886?referrer=searchResults
The electron is a subatomic particle that has a negative charge and a negligible mass. The electron travels around out side the nucleus.
The subatomic particles that are inside the nucleus are protons and neutrons.
The answer to your question is electron.
Answer:
Here’s what I get.
Explanation:
- The atomic number is the number of protons in the nucleus of an atom.
- The number of protons determines the number of electrons.
- The number of electrons determines the chemical properties of the element,
Thus, the atomic number determines the identity of the element.
The atomic mass does not affect the chemical properties, so different isotopes of an element behave alike.