Answer:
The reaction is not at equilibrium and reaction must run in forward direction.
Explanation:
At the given interval, concentration of NO = 
Concentration of
= 
Concentration of NOBr = 
Reaction quotient,
, for this reaction =
species inside third bracket represents concentrations at the given interval.
So, 
So, the reaction is not at equilibrium.
As
therefore reaction must run in forward direction to increase
and make it equal to
.
Yo sup??
Force is a vector quantity therefore it has both direction and magnitude.
Hence scientists measure magnitude and direction of a force.
Correct answer is option A
Hope this helps
Coal falls under Graphite
The answer is: when the aim is to show electron distributions in shells
An orbital notation is more appropriate if you want to show how the electrons of an atom are distributed in each subshell. This is because there are some atoms that have special electronic configurations that aren't obvious in just written configurations.
B
Please help
Sorry I need 20 characters to submit this Answer that’s why I’m adding more words