Simply divide the moles of a reactant by the number of moles of product
Answer: The correct option would be A.
Explanation: The main group elements which make more bonds than that was predicted from the octet rule are supposed to have expanded octet.
These elements tend to have more than 8 valence electrons after bonding and this can be achieved when we have empty d-orbitals.
When we have empty p-orbitals, total number of valence electrons than can be occupied will be 8.
Electronic configuration when valence shell's empty p-orbitals are fully filled = 
which means that a total of 8 electrons can be occupied which does not satisfy expanded octet rule.
Example of molecule showing expanded octet rule is given in the image. Here, after bonding Phosphorous has 10 electrons which is occupied in empty d-orbitals.
Answer:
electroluminescence is a production of light by the flow of electrons, as within certain crystals. An example is at most resataurants with a bright sign that either says open or closed.
Explanation:
Answer:
Empirical formula: BH3
Molecular Formula: B2H6
Explanation:
To solve the exercise, we need to know how many boron atoms and how many hydrogen atoms the compound has. We know that of the total weight of the compound, 78.14% correspond to boron and 21.86% to hydrogen. As the weight of the compound is between 27 g and 28 g, using the above percentages we can solve that the compound has between 21.1 g and 21.8 g of boron, and between 5.9 g and 6.1 g of hydrogen:
100% _____ 27 g
78.14% _____ x = 78.14% * 27g / 100% = 21.1 g boron
100% ______27 g
21.86% ______ x = 21.86% * 27g / 100% = 5.9 g hydrogen
100% _____ 28 g
78.14% _____ x = 78.14% * 28g / 100% = 21.8 g boron
100% _____ 28g
21.86% _____ x = 21.86% * 28g / 100% = 6.1 g hydrogen
So, if the atomic weight of boron is 10.8 g, there must be two boron atoms in the compound that sum 21.6 g. The weight of hydrogen is 1 g, so the compound must have six hydrogen atoms.
The molecular formula represents the real amount of atoms that form a compound. Therefore, the molecular formula of the compound is B2H6.
The empirical formula is the minimum expression that represents the proportion of atoms in a compound. For example, ethane has 2 carbon atoms and 6 hydrogen atoms, so its molecular formula is C2H6, however, its empirical formula is CH3. Therefore, the empirical formula of the boron compound is BH3.
Answer is: Keq expression for this system is Keq = <span>[O</span>₂<span> ]</span> · [H₂<span>]</span>² ÷ [H₂O<span>]</span>².<span>
Chemical reaction: 2H</span>₂O(g) ⇄ O₂(g) + 2H₂(g).
The equilibrium constant<span> (Keq) is a ratio of the concentration of the products (in this reaction oxygen and hydrogen) to the concentration of the reactants (in this reaction water).</span>