Answer:
2.9 is the initial pH of the analyte solution.
Explanation:
The dissociation constant of acetic acid as per theoretical value = 

The initial concentration of acetic acid = c = 0.0900 M

initially
c 0 0
At equilibrium
(c-x) x x
The expression of dissociation constant :
![K_a=\frac{[Ac^-][H^+]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BAc%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHAc%5D%7D)


Solving for x:
x = 0.001264 M
![[H^+]=0.001264 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.001264%20M)
The pH of the solution :
![pH=-\log[0.001264]=2.898\approx 2.9](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B0.001264%5D%3D2.898%5Capprox%202.9)
2.9 is the initial pH of the analyte solution.
Human bone does not contain oxygen
The grams of the sugar in 125 g of the drink is calculated as below
%M/m) = mass of the solute (sugar)/ mass of the solvent(drink) x100
let the mass of the solute(sugar) be represented by y
convert % into fraction by dividing by 100 = 10.5/100
10.5/100 = y/125
by cross multiplication
100y =1312.5
divide both side by 100
y=13.125 grams
Answer:
3.3 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 2.7 atm
- Initial volume (V₁): 1.6 L
- Final pressure (P₂): 1.3 atm
Step 2: Calculate the final volume of the balloon
Inside the balloon we have gas. If we consider it behaves as an ideal gas, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 2.7 atm × 1.6 L / 1.3 atm
V₂ = 3.3 L
Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.