Answer:
what is the net ionic equation
H2SO4(aq) + Cal2(aq) → CaSO4(s) + 2Hl(aq)?
A. H++ SO42- + Ca2+ + 21 → CaSO4 + H+ +1-
B. 2H+ + S042- + Ca2+ + 21° → Ca2+ + SO42- + 2H+ + 21
C. S042- + Ca2+ → CaSO4,
D. 2H+ + SO42- + Ca2+ + 2I- → CaSO4 + 2H+ + 2I-
cancel the spectator ion that is the ions which does not take place in the reaction
for this case is 2 H^+ and 2 i^-
Answer:
The mass number of an atom is equal to the number of protons plus the number of neutrons that it contains. In other words, the number of neutrons in an atom is its mass number minus its atomic number.
Explanation:
protons
The mass number of an atom is its total number of protons and neutrons. Atoms of different elements usually have different mass numbers , but they can be the same. For example, the mass number of argon atoms and calcium atoms can both be 40.
The mass of CO2 produced by 26g of acetylene is 88g.
Given ,
In an oxyacetylene torch, acetylene gas (ethyne; HCCH) burns to produce carbon dioxide and water vapour.
The acetylene combustion reaction is given by,
H2O + HCCH + 5/2 O=O 2CO2
Heat of reaction for acetylene combustion = 1259kj/mol
CO2 has a molecular mass of 44g/mol.
2 moles of CO2 have a molecular mass of 88g.
On combustion, 1 mole of acetylene yields 2 moles of CO2.
Thus, 26g of acetylene produces 88g of CO2 when burned.
As a result, the mass of carbon dioxide produced by 26g of acetylene is 88g.
Learn more about acetylene here :
brainly.com/question/15346128
#SPJ4
Answer:
n = Initial volume/22.4L
Explanation:
The molar concept is simply one that is used to find the Number of moles and explain the relationship it has with avogadro's number, molecular mass, molar mass e.t.c.
Now, in terms of molar mass, number of moles is given by the formula;
n = mass of the sample/molar mass
In terms of avogadro's number, number of moles is;
1 mole = avogadro's number = 6.02 × 10^(23)
Now, when dealing with ideal gases, the molar volume of an ideal gas is 22.4 L.
Now the relationship between this volume and the mole concept is that the number of moles is gotten by dividing the initial volume by this molar volume.
Thus;
n = Initial volume/22.4L