Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
Explanation:
The python code to generate this is quite simple to run.
i hope you understand everything written here, you can as well try out other problems to understand better.
First to begin, we import the package;
Code:
import pandas as pd
import matplotlib.pyplot as plt
name = input('Enter name of the file: ')
op = input('Enter name of output file: ')
df = pd.read_csv(name)
df['Date'] = pd.to_datetime(df["Date"].apply(str))
plt.plot(df['Date'],df['Absent']/(df['Present']+df['Absent']+df['Released']),label="% Absent")
plt.legend(loc="upper right")
plt.xticks(rotation=20)
plt.savefig(op)
plt.show()
This should generate the data(plot) as seen in the uploaded screenshot.
thanks i hope this helps!!!
Answer:
The specific weight of unknown liquid is found to be 15 KN/m³
Explanation:
The total pressure in tank is measured to be 65 KPa in the tank. But, the total pressure will be equal to the sum of pressures due to both oil and unknown liquid.
Total Pressure = Pressure of oil + Pressure of unknown liquid
65 KPa = (Specific Weight of oil)(depth of oil) + (Specific Weight of unknown liquid)(depth of unknown liquid)
65 KN/m² = (8.5 KN/m³)(5 m) + (Specific Weight of Unknown Liquid)(1.5 m)
(Specific Weight of Unknown Liquid)(1.5 m) = 65 KN/m² - 42.5 KN/m²
(Specific Weight of Unknown Liquid) = (22.5 KN/m²)/1.5 m
<u>Specific Weight of Unknown Liquid = 15 KN/m³</u>
Explanation:
Thermodynamics system :
Thermodynamics system is a region or space in which study of matters can be done.The system is separated from surroundings by a boundary this boundary maybe flexible or fixed it depends on situations.The out side the system is called surroundings.
Generally thermodynamics systems are of three types
1.Closed system(control mass system)
Only energy transfer take place ,no mass transfer take place.
2.Open system(control volume system)
Both mass as well as energy transfer take place.
3.Isolated system
Neither mass or nor energy transfer take place.
At steady state ,property is did not changes with respect to time.
Explanation:
Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process that solves a problem and fulfills a need (i.e. a technology).