<span>Separate this redox reaction into its component half-reactions.
Cl2 + 2Na ----> 2NaCl
reduction: Cl2 + 2 e- ----> 2Cl-1
oxidation: 2Na ----> 2Na+ & 2 e-
2) Write a balanced overall reaction from these unbalanced half-reactions:
oxidation: Sn ----> Sn^2+ & 2 e-
reduction: 2Ag^+ & 2e- ----> 2Ag
giving us
2Ag^+ & Sn ----> Sn^2+ & 2Ag </span>Steve O <span>· 5 years ago </span><span>
</span>
Magnesium :
<span>[Ne] 3s²</span>
Answer A
hope this helps!
Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters