I would say courtship, we this is when an animal would be looking for a mate. They would want to make themselves different and bright colors could attract a possible mate for them. I hope this helps!
Answer:
27.98g/mol
Explanation:
Using ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
T = temperature (K)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
According to the information given:
V = 2.5L
P = 1.4 atm
T = 282K
n = ?
Using PV = nRT
n = PV/RT
n = 1.4 × 2.5/0.0821 × 282
n = 3.5/23.1522
n = 0.151mol
Using the formula to calculate molar mass of the elemental gas:
mole = mass/molar mass
Molar mass = mass/mole
Molar mass = 4.23g ÷ 0.151mol
Molar mass = 27.98g/mol
Answer: 25°C=77°F
Explanation:
FORMULA
F=9/5 C+32
-----------------------------------
Given: C=25°
F=9/5 C+32
F=9/5 (25)+32
F=45+32
F=77°
Hope this helps!! :)
Please let me know if you have any question
Answer:
(a) A strong acid has a greater tendency to lose its protons.
(b) A strong acid has a higher Ka than a weak acid.
(c) A strong acid has a lower pKa than a weak acid.
Explanation:
A strong acid has the ability to completely transfer their protons to the water, making a complete dissociation. Instead, a weak acid only dissociates partially, how much it dissociates depends on the acid dissociation constant (Ka).
The weak acids always are in equilibrium, and the equilibrium depends on the acid dissociation constant.
⇄ 
Thus, a stronger acid with a bigger Ka produces more dissociation and a higher concentration of protons.
The equation that defines pKa is:

Therefore, a higher pKa means a lower Ka and also a weaker acid.