Answer:
the answer would be "using more heat" btw
Explanation:
Answer:
Explanation:
The period of oscillation is given as
T=2π√m/k
Making k subject of the formula
Square both sides of the equation
T²=4π²(m/k)
Cross multiply
T²k=4π²m
Then, divide through by T²
k=4π²m/T²
Where
k is spring constant
m is the mass of the bob
And T is the period of the oscillation
m=140g=0.14kg
14 oscillations takes 14 seconds
Then the period is
T=time/oscillation
T=14/14
T=1sec
Then,
k=4π²m/T²
k=4π²×0.14/1²
k=1.76N/m
Then, the spring constant is 1.76N/m
Answer:
t = 23.9nS
Explanation:
given :
Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m
distance d= 1mm=> 0.001
resistor R= 975 ohm
Capacitance can be calculated through the following formula,
C = (ε0 x A )/d
C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001
C = 17.7 x 10^-12 (pico 'p' = 10^-12)
C = 17.7pF
the voltage between two plates is related to time, There we use the following formula of the final voltage
Vc = Vx (1-e^-(t/CR))
75 = 100 x (1-e^-(t/CR))
75/100 = (1-e^-(t/CR))
.75 = (1-e^-(t/CR))
.75 -1 = -e^-(t/CR)
-0.25 = -e^-(t/CR) --->(cancelling out the negative sign)
e^-(t/CR) = 0.25
in order to remove the exponent, take logs on both sides
-t/CR = ln (0.25)
t/CR = -ln(0.25)
t = -CR x ln (0.25)
t = -(17.7 x 10^-12 x 975) x (-1.38629)
t = 23.9 x
t = 23.9ns
Thus, it took 23.9ns for the potential difference between the deflection plates to reach 75 volts
<u><em>The right answer is "A) Substance is denser as a solid than as a gas" Trust me I just got it wrong because of this guy down here or girls not trying to judge</em></u>
Answer:
100,800 Jkg
The heat that is used to change the state of a mater is called latent heat.
In this case it is converting ice to water and it is called latent heat of fusion.
It is given by:
Heat = mc
where m is the mass of ice and l is the specific latent heat of fusion of ice.
l = 0.336 MJ
Heat = 0.3 × 0.336 MJ
= 0.3 × 0.336 × 10⁶
= 100,800 Jkg