Answer:
6.86 × 10²⁴ kg
Explanation:
The mass of the earth m = density of earth, ρ × volume of earth, V
m = ρV
The density of the earth, ρ = 5515 kg/m³ and since the earth is a sphere, its volume is the volume of a sphere V = 4πr³/3 where r = radius of the earth = 6.67 × 10⁶ m
Since m = ρV
m = ρ4πr³/3
So, substituting the values of the variables into the equation for the mass of the earth, m, we have
m = 5515 kg/m³ × 4π(6.67 × 10⁶ m)³/3
m = 5515 kg/m³ × 4π × 296.741 × 10¹⁸ m³/3
m = 5515 kg/m³ × 1189.9639π × 10¹⁸ m³/3
m = 6546105.64378π × 10¹⁸ kg/3
m = 20565197.400122 × 10¹⁸ kg/3
m = 6855065.8 × 10¹⁸ kg
m = 6.8550658 × 10²⁴ kg
m ≅ 6.86 × 10²⁴ kg
Answer:
1472.98 m
Explanation:
Data provided:
Speed of circular looping, v = 340 m/s
Acceleration, a = 8g
here,
g is the acceleration due to the gravity = 9.81 m/s²
Now,
the centripetal acceleration is given as,
r is the radius of the loop
on substituting the respective values, we get
or
r = 1472.98 m
Energy Conservation Theory,




<h3>What is law of energy conservation?</h3>
The principle of energy conservation states that energy is neither created nor destroyed. It may change from one sort to another. Just like the mass conservation rule, the legitimacy of the preservation of energy depends on experimental perceptions; hence, it is an experimental law. The law of preservation of energy, too known as the primary law of thermodynamics
To learn more about Energy Conservation Theory, visit;
brainly.com/question/8004680
#SPJ4
Heat rises therefore the heat from the fire rises up to your hand... i didnt have any answer choices to work with sorry