Answer:
A. a new substance is being produced.
Explanation:
The bubbles most likely indicates that a new substance is being produced by this reaction. In essence, we describe this sort of change as chemical change.
In a chemical change, new substances are usually produced. They are accompanied by the evolution or absorption of energy.
The reaction of Zinc with a strong acid to produce bubbles on the surface of the metal indicates a chemical change and the formation of a new kind of substance.
Take for example, let zinc reacts with hydrocholoric acid, HCl;
Zn + 2HCl → ZnCl₂ + H₂
Since Zn is higher than Hydrogen in the activity series, it will displace it from HCl and liberate hydrogen gas as a product. This will cause the bubbles observed in the reaction.
This is a chemical change and new products have been formed.
B and D are wrong because they are both physical changes.
C is wrong because no information about such is provided by the problem statement.
So, when a piece of zinc metal combines with a strong acid, a new kind of substance is produced.
Answer:


Explanation:
1 mol of nitrogen at STP = 22.4 L = 22400 cc
n = Mol of
= 
M = Molar mass of
= 
= Avogadro's number = 
Mass of
is

Mass of the nitrogen is 
Number of molecules is given by

The number of molecules present in it are 
Not enough information!
Its pretty simple if you think about it.
These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4