a plant that has flowers and fruits
Answer:
A
Explanation:
The answer A is the best answer because it contains the most general characteristic of a chemical change.
Explanation :
As we know that the Gibbs free energy is not only function of temperature and pressure but also amount of each substance in the system.

where,
is the amount of component 1 and 2 in the system.
Partial molar Gibbs free energy : The partial derivative of Gibbs free energy with respect to amount of component (i) of a mixture when other variable
are kept constant are known as partial molar Gibbs free energy of
component.
For a substance in a mixture, the chemical potential
is defined as the partial molar Gibbs free energy.
The expression will be:

where,
T = temperature
P = pressure
is the amount of component 'i' and 'j' in the system.

We know, 1 m³ of space can hold 1000 l of the substance.
⇛ 1 m³ = 1000 l----(1)
And, 1 l is 1000 times more than 1 ml
⇛ 1 l = 1000 ml------(2)
So, From (1) and (2),
⇛ 1 m³ = 1000 × 1000 ml
⇛ 1m³ = 1000000 ml
We had to find,
⇛ 1.40 m³ = 1.40 × 1000000 ml
⇛ 1.40 m³ = 140/100 × 1000000 ml
⇛ 1.40 m³ = 1400000 ml
⇛ 1.40 m³ = 14,00,000 ml / 14 × 10⁵ ml / 1.4 × 10⁶ ml
☃️ <u>So</u><u>,</u><u> </u><u>1.40</u><u> </u><u>m</u><u>³</u><u> </u><u>=</u><u> </u><u>1</u><u>4</u><u> </u><u>×</u><u> </u><u>1</u><u>0</u><u>⁵</u><u> </u><u>m</u><u>l</u><u> </u><u>/</u><u> </u><u>1.4</u><u> </u><u>×</u><u> </u><u>10</u><u>⁶</u><u> </u><u>ml</u><u>.</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Greenhouse gases are the gases in the atmosphere that keep the air in the atmosphere. It also traps the sun's sunlight. Since the heat is trapped in here, it would contribute to higher temperatures. *Have a nice day!!*