Answer:
The time after which the two stones meet is tₓ = 4 s
Explanation:
Given data,
The height of the building, h = 200 m
The velocity of the stone thrown from foot of the building, U = 50 m/s
Using the II equation of motion
S = ut + ½ gt²
Let tₓ be the time where the two stones meet and x be the distance covered from the top of the building
The equation for the stone dropped from top of the building becomes
x = 0 + ½ gtₓ²
The equation for the stone thrown from the base becomes
S - x = U tₓ - ½ gtₓ² (∵ the motion of the stone is in opposite direction)
Adding these two equations,
x + (S - x) = U tₓ
S = U tₓ
200 = 50 tₓ
∴ tₓ = 4 s
Hence, the time after which the two stones meet is tₓ = 4 s
Answer:
First, let’s correct the question. Acceleration is the rate of change in velocity. Its unit therefore is ft/sec/sec. If S is the distance traveled for a given duration, S = Vot + (1/2)at^2 where Vo is the initial velocity, a is the acceleration and t is the time. For Vo = 0, a = 6m/sec/sec and t = 3 sec. The distance traveled is S = 0 + (1/2) x 6 x 3^2 = 27 meters
Hi!
SI units are physical measurements which will be in the form of kilograms, second, kelvin, metres, etc.
Since kilograms measure the weight of an object, it is out. Miles and feet are not SI units, so they are also out. This only leaves one answer left!
Hopefully, this helps! =)
i do not have an answer because it depends on the size and the distance lol
Answer:
the force exerted by the seat on the pilot is 10766.7 N
Explanation:
The computation of the force exerted by the seat on the pilot is as follows:

Hence, the force exerted by the seat on the pilot is 10766.7 N