Answer:
2.76 × 10⁻¹¹
Explanation:
I don’t have access to the ALEKS Data resource, so I used a different source. The number may be different from yours.
1. Calculate the free energy of formation of CCl₄
C(s)+ 2Cl₂(g)→ CCl₄(g)
ΔG°/ mol·L⁻¹: 0 0 -65.3
ΔᵣG° = ΔG°f(products) - ΔG°f(reactants) = -65.3 kJ·mol⁻¹
2. Calculate K

T = (25.0 + 273.15) K = 298.15 K

Answer:
Explanation:
Given parameters:
Initial temperature T₁ = 25.2°C = 25.2 + 273 = 298.2K
Initial pressure = P₁ = 0.6atm
Final temperature = 72.4°C = 72.4 + 273 = 345.4K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use an adaption of the combined gas law where the volume gas is fixed. This simplification results into:

where P and T are temperatures, 1 and 2 are initial and final temperatures.
Input the parameters and solve;
P₂ = 0.7atm
No, it won't change the amount of reactants nor the products as a catalyst will only provide an alternative path where lower activation energy is needed for the process to take place.
hope this explains it
If it does, please give it a brainliest :)))
.100 mol CO2 x

using the values of the periodic you first add the masses of C (12.01g) and O (there are two so it'll be 32.00g). That value will give the mass of 1mole of CO2.
I hate to do this, but
https://youtu.be/Pft2CASl0M0 is a link to a mr andersen video. I dislike watching these cause this is what my teacher uses instead of actually having to teach herself.
You should do which candle burn the fastest colored or white