Explanation:
The given data is as follows.
mass of gasoline = 595.0 lb
volume of gasoline = 
As it is known that density is the amount of mass of a substance divided by its volume.
So, density of gasoline will be as follows.
Density = 
= 
= 42.5 
As, 1 lb = 0.4536 kg and 1 ft = 0.3048 m. Now, putting these values into the above equation (1) as follows.
Density = 42.5 
= 
= 680.792
= 680.8
(approx)
Density of water is 1000
. To measure specific gravity of gasoline, the formula will be as follows.
specific gravity of gasoline =
= 
= 0.681
Thus, we can conclude that the specific gravity of gasoline is 0.681.
Since Group 2 alkali earth metals have 2 valence electrons, they tend to lose those 2 when forming ionic bonds. And the Loss of Electrons = Oxidation (L.E.O. for short). Therefore this group, including Mg and Ca, have an oxidation of [+2].
So the correct answer is C) +2
Answer:
(a) -0.00017 M/s;
(b) 0.00034 M/s
Explanation:
(a) Rate of a reaction is defined as change in molarity in a unit time, that is:

Given the following reaction:

We may write the rate expression in terms of reactants firstly. Since reactants are decreasing in molarity, we're adding a negative sign. Similarly, if we wish to look at the overall reaction rate, we need to divide by stoichiometric coefficients:
![r = -\frac{\Delta [N_2O_5]}{2 \Delta t}](https://tex.z-dn.net/?f=r%20%3D%20-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D)
Reaction rate is also equal to the rate of formation of products divided by their coefficients:
![r = \frac{\Delta [NO_2]}{4 \Delta t} = \frac{\Delta [O_2]}{\Delta t}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BO_2%5D%7D%7B%5CDelta%20t%7D)
Let's find the rate of disappearance of the reactant firstly. This would be found dividing the change in molarity by the change in time:

(b) Using the relationship derived previously, we know that:
![-\frac{\Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{4 \Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D)
Rate of appearance of nitrogen dioxide is given by:
![r_{NO_2} = \frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=r_%7BNO_2%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
Which is obtained from the equation:
![-\frac{\Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{4 \Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D)
If we multiply both sides by 4, that is:
![-\frac{4 \Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B4%20%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
This yields:
[tex]r_{NO_2} = \frac{\Delta [NO_2]}{\Delta t} = -2\frac{\Delta [N_2O_5]}{ \Delta t} = -2\cdot (-0.00017 M/s) = 0.00034 M/s[tex]
Answer:
CaCl₂(s) ⟶ Ca²⁺(aq) + 2Cl⁻(aq)
Explanation:
When the calcium chloride dissolves. the calcium and chloride ions leave the surface of the solid and go into solution as hydrated ions.
A chemical equation should be balanced, so that when you make calculations based on the equation you must be able to relate the products to the reactants or vice versa. An example of using equations for calculations in chemistry is with the subject stoichiometry.