<u>Answer:</u> The final temperature of the mixture is 51.49°C
<u>Explanation:</u>
When two samples of water are mixed, the heat released by the water at high temperature will be equal to the amount of heat absorbed by water at low temperature

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of water at high temperature = 140 g (Density of water = 1.00 g/mL)
= mass of water at low temperature = 230 g
= final temperature = ?°C
= initial temperature of water at high temperature = 95.00°C
= initial temperature of water at low temperature = 25.00°C
c = specific heat of water= 4.186 J/g°C
Putting values in equation 1, we get:
![140\times 4.186\times (T_{final}-95)=-[230\times 4.186\times (T_{final}-25)]](https://tex.z-dn.net/?f=140%5Ctimes%204.186%5Ctimes%20%28T_%7Bfinal%7D-95%29%3D-%5B230%5Ctimes%204.186%5Ctimes%20%28T_%7Bfinal%7D-25%29%5D)

Hence, the final temperature of the mixture is 51.49°C
The scientific meaning of salt is an ionic compound that is formed when an acid and a base reaction take place and is neutralized.
The common meaning of salt (table salt) is specifically the organic mineral of sodium chloride (NaCl) and is digestible.
Ionic salts are often not digestible (or not commonly digested, anyway)
Answer:
These properties are basically the inverse of each other.
Explanation:
- Electronegativity is the tendency of an atom to attract an electron and make it a part of its orbital.
Ionization enthalpy, is the energy required to remove an electron from an atom.
- More electronegative atoms have high ionization enthalpies If the energy required to remove an electron is less, i.e. the atom has more tendency to give electron, it would thus have less tendency to take electron.
- Values and tendency of electronegativity in the periodic table: In general, the electronegativity of a non‐metal is larger than that of metal. For the elements of one period the electronegativities increase from left to right across the periodic table. For the elements of one main group the electronegativities decrease from top to bottom across the periodic table. To the subgroup elements, there’s no regular rule.
- Values and tendency of ionization potential in the periodic table: The first ionization energy is the energy which is required when a gaseous atom/ion loses an electron to form a gaseous +1 valence ion. The energy which is required for a gaseous +1 valence ion to loose an electron to form a gaseous +2 valence ion, is called the second ionization energy of an element. In general, the second ionization energy is higher than the first ionization energy of an element.
The first ionization energies of the elements of one period increase from the left to the right across the periodic table. According to the elements of main group, the first ionization energies generally decreases from top to bottom across the periodic table.
Answer:
See explanation
Explanation:
I'm assuming you're asking about intensive properties. These properties only depend on the type of material, not the amount. Examples include color, temperature, boiling point, and hardness.
The most abundant carbon isotope is carbon-12.
The relative atomic mass of carbon is 12.011, which is extremely close to 12.0. This means that the masses C-13, and C-14 are practically negligible when contributing to the relative atomic mass of carbon.
the C-12 isotope makes up 98.9% of carbon atoms, C-13 makes up 1.1% of carbon atoms, and C-14 makes up just a trace of carbon atoms as they are found in nature.