Answer:
it's easy u just have to put them in a calculator the way they are it will give you your answer atleast I think so hope this helps
Correct answer: B
Cooling curve is the plot of temperature versus time as the sample is allowed to cool. In a cooling curve, we start at a temperature greater than the boiling point. At this temperature, the sample is in gaseous state. At the boiling point, there is no change in temperature as the gaseous and liquid states are in equilibrium. As the temperature reduces further, the liquid starts to condense and at the melting point of the sample the liquid undergoes phase transition to solid state. At the melting temperature, a second plateau is observed as the temperature remains unchanged. At temperatures below the melting point, the sample exists as a solid.
So from the curve, the second plateau is observed at around -111
. This point represents the phase transition from liquid to solid state.
Answer:
All offspring are tall when a homozygous tall parent with homozygous short parent.
Explanation:
When we crossed homozygous tall parent with homozygous short parent, we conclude that all offspring are tall, because homozygous short parent are supressed under the homozygous tall parent, due to law of dominance.
Law of dominance states that, recessive alleles are suppressed by dominant alleles but they can appear in F2 generation.
Using a punett square, we can predict the cross between homozygous tall and homozygous short parent.
The phenotypes are: All are tall plants (4:0).
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals.
To answer the question above, substitute the given values to the given equation,
Q(t) = Q x e^-kt
12 grams = (36 grams) x e^(-0.00011)(t)
Solving for t gives t = 9,987.38 years or approximately equal to 9,990 years. Thus, the answer is letter C.