We are going to use this equation:
ΔT = - i m Kf
when m is the molality of a solution
i = 2
and ΔT is the change in melting point = T2- 0 °C
and Kf is cryoscopic constant = 1.86C/m
now we need to calculate the molality so we have to get the moles of NaCl first:
moles of NaCl = mass / molar mass
= 3.5 g / 58.44
= 0.0599 moles
when the density of water = 1 g / mL and the volume =230 L
∴ the mass of water = 1 g * 230 mL = 230 g = 0.23Kg
now we can get the molality = moles NaCl / Kg water
=0.0599moles/0.23Kg
= 0.26 m
∴T2-0 = - 2 * 0.26 *1.86
∴T2 = -0.967 °C
Answer:
<em>o</em>-bromotoluene, <em>m</em>-bromotoluene and <em>p</em>-bromotoluene.
Explanation:
Hello,
In this case, on the attached picture you will find the reaction which yields <em>o</em>-bromotoluene as the first product, <em>m</em>-bromotoluene as the second product and <em>p</em>-bromotoluene as the last one since the substitution could be done at the second (ortho), third (meta) or fourth (para) carbons on the toluene.
Regards.
Answer:
Please find the explanation to this question below.
Explanation:
Higher probability of loss. Chorionic villus sampling (CVS) and Amniocentesis (AC). The prenatal diagnosis technique can be done earlier in fetal development CVS (first trimester --> 10-13 weeks). AC (second trimester --> 16-20 weeks)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.