Answer:
P1V1/T1= P2V2/T2
Explanation:
Combined gas law involves Boyle's law and Charles law altogether with the formula of Boyle's law as P1V1=P2V2
formula for charles law as V1/T1=V2/T2
so when combined form P1V1/T1=P2V2/T2
Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.
Explanation:
Most reagent forms are going to absorb water from the air; they're called "hygroscopic". Water presence can have a drastic impact on the experiment being performed For fact, it increases the reagent's molecular weight, meaning that anything involving a very specific molarity (the amount of molecules in the final solution) will not function properly.
Heating will help to eliminate water, although some chemicals don't react well to heat, so it shouldn't be used for all. A dessicated environment is simply a means to "dry." That allows the reagent with little water in the air to attach with.
I think it is trace evidence since it is really small and hard to find.