Explanation:
initial velocity U = 20m/s
Final velocity V = 35m/s
time = 15.0 secs
change in velocity = 35 - 15
= 20m/s
acceleration a = change in velocity/time V/t
a = (35-20)/15
a= 15/15
Hence, your acceleration is 1m/s^2
Formula for feild strength= F/q
q=7.0^10-5 coulombs
F=5.2 N
E=5.2 / 7.0^10-5
E=
Answer:
T = 451.26 N
Explanation:
It is given that,
The mass of block, m = 46 kg
Mass of the chain, m' = 19 kg
Length of the chain, l = 1.9 m
Let T is the the tension in the chain at the point where the chain is supporting the block. It is clearly equal to the product of mass and acceleration.


T = 451.26 N
So, the tension in the chain at the point where the chain is supporting the block is 451.26 N. Hence, this is the required solution.
Answer:
10581.59 V
Explanation:
We are given that
Magnetic field=B=0.65 T
Speed of electron=
Charge on electron, 
Mass of electron,
We have to find the potential difference in volts required in the first part of the experiment to accelerate electrons.

Where V=Potential difference
Mass of electron
v=Velocity of electron
Using the formula


Hence, the potential difference=10581.59 V
Dressage. It’s an event in horseback riding.