Answer:
your answer will be 320kg that would be the pressure at the bottom surface of the block
In order to calculate the angle, we can use the formula below for a constructive interference (the interference is constructive because the fringe is bright):

Where d is the distance between the slits, m is the order of the interference and lambda is the wavelength.
So, using d = 8.25 * 10^-5, m = 2 and lambda = 4.5 * 10^-7, we have:

Therefore the correct option is the second one.
Answer:
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases. ... gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
<h3>Hope this is fine for you</h3>
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556
Answer:
t = 0.67 [s]
Explanation:
To solve this problem we must use the following kinematics equation.

Vf = final velocity = 20[m/s]
Vi = initial velocity = 10 [m/s]
a = aceleration = 15 [m/s^2]
Now replacing in the equation we have:
20 = 10 + (15*t)
t = (20-10)/15
t = 0.67 [s]