1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
15

Determine the value(s) of x at which the function f(x)=x⁴-8x² +2 has a horizontal tangent. ​

Mathematics
1 answer:
Slav-nsk [51]3 years ago
3 0

Answer:

4 {x}^{3}  - 16x = 0 \\ 4x( {x}^{2}  - 4) = 0 \\ 4x(x - 2)(x + 2) = 0 \\ x = 0or \: or - 2

You might be interested in
A factory produces 5, 836 keyboards each day. If a box holds 20 keyboards, which statement is true?
STALIN [3.7K]

Answer:

Step-by-step explanation:

Which price gives the store the maximum amount of revenue, and what is the ... When graphing the function f(x)=-x+5+12 on your graphing calculator, what is the ... Based on the graph, how many real number solutions does the equation x3 + ... is challenged to a game by a classmate, which statement below is correct in all ...

Missing: 836 ‎| Must include:

7 0
3 years ago
Read 2 more answers
Simplify please (10 points)
Ludmilka [50]

Answer:

The answer is 4th point

Step-by-step explanation:

√5(10 - 4√2)

= (√5×10)-(√5×4√2)

= 10√5 - 4√10

7 0
4 years ago
Read 2 more answers
If alpha and beta are zeroes of polynomial fx = 4x2-5x-1. Pls answer full questiob
Ede4ka [16]
<h3>...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................</h3><h2>I like 15 yr old girls.</h2>

6 0
2 years ago
Which of the following is the definition of term?
vesna_86 [32]
What are the options it gives you?
8 0
3 years ago
For the following graph , determine the coordinates of the vertex and the y intercept of the parabola.
Rus_ich [418]

Answer:

Vertex : 5

Y - intercept : (0,-4)

Step-by-step explanation:

-4 is on the y-axis.

Vertex is the maximum or the minimum point of the parabola.

7 0
3 years ago
Read 2 more answers
Other questions:
  • I'm confused on this practice assignment
    8·1 answer
  • 9/35 x 7/16 x 20/21 =<br><br>show work
    8·1 answer
  • Marvin says that all rhombuses are squares. Aretha says that all squares are rhombuses. who is correct?
    15·1 answer
  • Can anyone give me formula to solve these problems?
    9·1 answer
  • Todd says that he can make 10 if he adds 32 coins to 28 coins. Is he correct? Explain how you know using words.
    8·1 answer
  • Stuck on this 50 points on the line.
    6·2 answers
  • Help??? Please? I need to pass.
    9·1 answer
  • A bag contains 3 red cubes, 4 yellow cubes, and 3 green cubes. You choose a cube without looking, note its color, and put the cu
    12·2 answers
  • 19. Choose the repeating decimal that is equal to
    12·1 answer
  • Please help for brainliest !!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!