I know what you're asking but I don't think the question is stated properly. Technically, an atom will not join with an "oxide" ion; i.e., the oxide ion is an atom of oxygen to which two electrons have been added. An oxide ion will add to 2 K ions or 1 Ca ion. The K ion has lost just one electron so it takes two of them to equal the 2- charge on the oxide ion whereas the Ca ion has lost two electrons and it takes only one of them to equal the charge on the oxide ion.
The molarity and normality of 5.7 g of Ca(OH)2 in 450ml 0f solution is calculated as follows
molarity = moles/volume in liters
moles =mass/molar mass
= 5.7g/74g/mol = 0.077moles
molarity = 0.077/450 x1000= 0.17M
Normality = equivalent point x molarity
equivalent point of Ca(OH)2 is 2 since it has two Hydrogen atom
normality is therefore = 0.17 x2 = 0.34 N
Oxidation is the half reaction that can occur at the anode in a voltaic cell.
Explanation:
In electrodes which is metal strip in voltaic cell the reactions occurs. The two electrodes placed one in each half-cell. The reduction reaction occurs at cathode and oxidation occurs at anode.
A half reaction is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. Half-reactions are often used as a method of balancing redox reactions.
In an oxidation half reaction, an atom loses electron(s). When an element is oxidized it loses a specific number of electrons.
Answer:
Option D. KBr < KCl < NaCl
Explanation:
We'll begin by calculating the number of mole of each sample.
This can be obtained as follow:
For NaCl:
Mass = 1 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mole of NaCl =?
Mole = mass /Molar mass
Mole of NaCl = 1/58.5
Mole of NaCl = 0.0171 mole
For Kbr:
Mass = 1 g
Molar mass of KBr = 39 + 80 = 119 g/mol
Mole of KBr =?
Mole = mass /Molar mass
Mole of KBr = 1/119
Mole of KBr = 0.0084 mole
For KCl:
Mass = 1 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mole of KCl =?
Mole = mass /Molar mass
Mole of KCl = 1/74.5
Mole of KCl = 0.0134 mole
Summary
Sample >>>>>>>> Number of mole
NaCl >>>>>>>>>> 0.0171
KBr >>>>>>>>>>> 0.0084
KCl >>>>>>>>>>> 0.0134
Arranging the number of mole of the sampl in increasing order, we have:
KBr < KCl < NaCl