<h3>
Answer: Si (choice D)</h3>
This is the element Silicon.
=========================================================
Explanation:
First convert each percentage to its decimal form.
For example, 92.2297% converts to 0.922297 after moving the decimal point two spots to the left.
After doing that, multiply those decimal values with their respective atomic mass unit (amu) values.
- 27.9769 * 0.922297 = 25.8030109393
- 28.9765 * 0.046832 = 1.357027448
- 29.9738 * 0.030872 = 0.9253511536
Then we add up the results
25.8030109393 + 1.357027448 + 0.9253511536 = 28.0853895409
That rounds to about 28.085
Then look at the periodic table to see the atomic mass of Cobalt (Co), Aluminum (Al), Nickel (Ni) and Silicon (Si). The mass values listed in the periodic table are weighted averages of all the isotopes. The units for the mass are still in amu.
- Cobalt = 58.933
- Aluminum = 26.982
- Nickel = 58.693
- Silicon = 28.085
We have a match with silicon, showing that <u>choice D</u> is the final answer.
First you have to moles so multiply .0483L X .55M= .026565 Multiply moles by mole ratio which is 1/2, so the moles becomes .013283 now molarity=moles/volume; divide .013283/.015L=.885533M significant figures and you final answer is 0.89M
Answer:
<h2>117.94 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>117.94 moles</h3>
Hope this helps you
Answer:
I hope you understand please follow me please
Answer:
The five phases of matter. There are four natural states of matter: Solids, liquids, gases and plasma. The fifth state is the man-made Bose-Einstein condensates. In a solid, particles are packed tightly together so they don't move much.