Answer:Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g)
O2Zn(s) + H2SO4(aq) → 22nH(aq) + SO4(s)
Explanation:
What class is this for because it depends
Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
There are different formula you need to keep in mind when solving for [OH-]
Given that pH = 6.10
pH + pOH = 14
6.10 + pOH = 14
pOH = 7.9
[OH-] = 10^(-pOH)
[OH-] = 10^(-7.9)
[OH-] = 0.000000013
[OH-] = 1.3 x 10^-8
<h2>
<u>Answer: [OH-] = 1.3 x 10^-8</u></h2>
An exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy),[1] indicating a spontaneous reaction. For processes that take place under constant pressure and temperature conditions, the Gibbs free energy is used whereas the Helmholtz energy is used for processes that take place under constant volume and temperature conditions.
Symbolically, the release of free energy, G, in an exergonic reaction (at constant pressure and temperature) is denoted as
{\displaystyle \Delta G=G_{\rm {products}}-G_{\rm {reactants}}<0.\,}
Although exergonic reactions are said to occur spontaneously, this does not imply that the reaction will take place at an observable rate. For instance, the disproportionation of hydrogen peroxide is very slow in the absence of a suitable catalyst. It has been suggested that eager would be a more intuitive term in this context.[2]
More generally, the terms exergonic and endergonic relate to the free energy change in any process, not just chemical reactions. An example of an exergonic reaction is cellular respiration. This relates to the degrees of freedom as a consequence of entropy, the temperature, and the difference in heat released or absorbed.
By contrast, the terms exothermic and endothermic relate to the overall exchange of heat during a process