FALSE
There are other limiting factors like lack of space, diseases, and com petition.
<span>C. C4H8
Given that the number of moles of CO2 and H2O produced from the combustion are equal, that means for every carbon atom, there are 2 hydrogen atoms because CO2 has only 1 carbon atom and H2O has 2 hydrogen atoms. So let's look at the available choices and see which one is correct.
A. C2H2
This is a 1 to 1 ratio of carbon to hydrogen. Wrong answer.
B. C2H6
This is a 1 to 3 ratio of carbon to hydrogen. Wrong answer.
C. C4H8
This is a 1 to 2 ratio of carbon to hydrogen. Correct answer.
D. C6H6
This is a 1 to 1 ratio of carbon to hydrogen. Wrong answer.</span>
The complete question is shown in the image attached to this answer.
Answer:
C
Explanation:
Let us quickly remember that the EMF of a cell under non standard conditions in given by the Nernst equation.
This equation states that;
E = E°cell - 0.592/n log Q
Where
E = EMF under non standard conditions
E°cell= standard EMF of the cell
n = number of electrons transferred
Q = reaction quotient
If the reaction quotient is greater than 1 then cell potential is less than the standard cell potential.
The cell that generates the lowest cell potential is the cell depicted in option C because Q has the greatest positive value(Q<1).
It is important to note that mass and mole pertain to different units of measurement, thus, 1 mole of one substance may have a lower or higher mass compared to a different substance. The mass of an object gives a measure of the number of atoms present in the substance while the number of moles of a substance refers to the amount of a chemical substance it has and is often used for chemical reactions.
For this problem, we first get the molar mass of each substance:
Molar mass of H2O = 18.0153 g/mol
Molar mass of C6H12O6 = 180.1559 g/mol
We then convert each substance into units of mass (grams), where:
1 mol H20 x 18.0153 g/mol = 18.0153 g H20
1 mol C6H12O6 x 180.1559 g/mol = 180.1559 g C6H12O6
It was then determined that 1 mole of glucose has more mass than 1 mole of water.