Answer:
A triangular prism has base edges 4 cm, 5 cm, and 6 cm long. Its lateral area is
300 cm2.
What is the height of the prism?
<h3>
Answer:</h3>
6 hours
<h3>
Step-by-step explanation:</h3>
The two hoses together take 1/3 the time (4/12 = 1/3), so the two hoses together are equivalent to 3 of the first hose.
That is, the second hose is equivalent to 2 of the first hose. Two of the first hose could fill the vat in half the time one of them can, so 6 hours.
The second hose alone can fill the vat in 6 hours.
_____
The first hose's rate of doing work is ...
... (1 vat)/(12 hours) = (1/12) vat/hour
If h is the second hose's rate of doing work, then working together their rate is ...
... (1/12 vat/hour) + h = (1/4 vat/hour)
... h = (1/4 - 1/12) vat/hour = (3/12 -1/12) vat/hour = 2/12 vat/hour
... h = 1/6 vat/hour
so will take 6 hours to fill 1 vat.
Answer: $466.
Step-by-step explanation:
Add all the numbers in the graph together, you get 194.
Now, subtract 194 from 660, you get 466. That's how much profit the company makes.
Answer:
the container is 1/4 full at 9:58 AM
Step-by-step explanation:
since the volume doubles every minute , the formula for calculating the volume V at any time t is
V(t)=V₀*2^-t , where t is in minutes back from 10 AM and V₀= container volume
thus for t=1 min (9:59 AM) the volume is V₁=V₀/2 (half of the initial one) , for t=2 (9:58 AM) is V₂=V₁/2=V₀/4 ...
therefore when the container is 1/4 full the volume is V=V₀/4 , thus replacing in the equation we obtain
V=V₀*2^-t
V₀/4 = V₀*2^-t
1/4 = 2^-t
appling logarithms
ln (1/4) = -t* ln 2
t = - ln (1/4)/ln 2 = ln 4 /ln 2 = 2*ln 2 / ln 2 = 2
thus t=2 min before 10 AM → 9:58 AM
therefore the container is 1/4 full at 9:58 AM