<u>Answer:</u>
The spaceship's position when the engine shuts off = 
<u>Explanation:</u>
Initial location of spaceship = (600 i - 400 j + 200 k)*
= (600 i - 400 j + 200 k)*
Initial velocity = 9500 i m/s
Acceleration = (40 i - 20 k)
Time = 35 minute = 35 * 60 = 2100 seconds
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
Substituting

So final position = 
=
The spaceship's position when the engine shuts off = 
Let the cannonball be thrown at a height of h above ground.
Then the potential energy of the ball is
V = m*g*h
where
m = the mass of the ball
g = 9.8 m/s²
Also, the kinetic energy of the ball is
K = (1/2)mu²
where
u = 5 m/s, the vertical launch velocity.
Ignore wind resistance.
Because the total energy is preserved, the total energy (n the form of only kinetic energy) when the ball strikes the ground is
(1/2)mV²
where V = vertical velocity when the ball strikes the ground.
Expressions for both the initial and final energy are equal regardless of whether the ball s thrown downward or upward.
Therefore there is no difference in the landing speed.
Answer: There is no difference.
A physical change involves a change in physical properties. Examples of physical properties include melting, transition to a gas, change of strength, change of durability, changes to crystal form, textural change, shape, size, color, volume and density.
Answer:
The minimum number of 100 Ω resistors that i need to design an effective resistor with 275Ω resistance are 8 resistors.
Explanation:
(2 Resistors of 100Ω in parallel) in <u>series with</u> (4 resistors of 100Ω in parallel) in <u>series</u> with 2 resistors of 100Ω.
2 resistors in parallel of 100Ω = 50Ω
+
4 resistors in parallel of 100Ω = 25Ω
+
2 resistors in series of 100 2Ω = 200Ω
=
275Ω
Answer:
Angle of incidence ray
Explanation:
The way light reflects off a smooth surface is described by the law of reflection. This law states that the angle of reflection equals the ANGLE OF INCIDENCE RAY.
This is because, when light is reflected off a smooth surface, the light is reflected by all the points that is present on that smooth surface.
Therefore the speed at which the light rays falls on the smooth surface is the same as the speed at which the light ray is reflected back. Due to their speed been the same, the distance of the incidence ray would also be the same as the distance of the reflected ray.
Hence the angle of incidence = angle of reflection.