The value of x such that f(x) = g(x) is x = 3
<h3>Quadratic equation</h3>
Given the following expressions as shown
f(x) = x^3-3x^2+2 and;
g(x) = x^2 -6x+11
Equate the expressions
x^3-3x^2+2 = x^2 -6x+11
Equate to zero
x^3-3x^2-x^2+2-11 = 0
x^3-3x^2-x^2 + 6x - 9 = 0
x^3-4x^2+6x-9 = 0
Factorize
On factorizing the value of x = 3
Hence the value of x such that f(x) = g(x) is x = 3
Learn more on polynomial here: brainly.com/question/2833285
#SPJ1
The answer is C just guessed and i got it right.
D is your answer if you times 8 and 2 together to get your A& B
Answer:
o = 54
Step-by-step explanation:
The angle sum theorem tells you the sum of angles in a triangle is 180°. The definition of a linear pair tells you the two angles of a linear pair total 180°. Together, these relations tell you that an exterior angle of a triangle is equal to the sum of the remote interior angles.
In this geometry, the angle marked 78° is exterior to the left-side triangle. That means ...
78° = o° +24°
o° = 78° -24° = 54°
The value of 'o' is 54.
__
<em>Additional comment</em>
n° is the supplement of 78°, so is 102°.
m° is the difference between 102° and 22°, so is 80°.
The answer is C.0.2
That’s what I got