Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J
Answer:
Explanation:
An element with atomic number 18 is a noble gas.
The element with atomic number 19 will have one extra electron so it can donate one electron or shed one electron to attain noble gas configuration .
It tends to shed one electron to become positively charged ion . Hence they are electro-positive elements .
Similarly the element with atomic number 17 will have one short electron so it can gain one electron to attain noble gas configuration .
They tend to gain one electron to become negatively charged ion . Hence they are electro-negative elements . They have high electronegativity .
Answer:
Coefficient of
in the balanced equation with smallest possible integer is 6.
Explanation:
Unbalanced equation: 
Balance Ca: 
Balance
: 
Balance H and O: 
Balanced equation: 
So coefficient of
in the balanced equation with smallest possible integer is 6.
B). Have a variable volume, meaning they fill up the area they are in.
Answer:
divergent
Explanation:
I believe it is divergent.