Answer:
C) to show that atoms are conserved in chemical reactions
Explanation:
When writing a chemical reaction, we should always consider the Mass Conservation Law, which basically states that; in an isolated system; the total mass should remain constant, this is, the total mass of the reactives should be equal to the total mass of the products
For this case, we should add the apporpiate coefficients in order to be in compliance with this law:
2H₂ + O₂ → 2H₂O
So, we can check the above statement:
For reactives (left side):
4H
2O
For product (right side):
4H
2O
First, we need to calculate the principal quantum number n for this electron, using the equation:
E = (-13.60 eV) / (n x n)
where E is the energy that is used to bound the electron (here, E = - 0.544 eV).
- 0.544 eV = (-13.60 eV) / (n x n)
n x n = (- 13.60 eV) / (- 0.544 eV)
n x n = 25
n = 5
The orbital radius that is equal to the radius of a hydrogen atom is calculated using the equation:
r = 0.053 nm x n x n
r = 0.053 nm x 5 x 5
r = 0.053 nm x 25
r = 1.325 nm
Answer: Too much base was added
i guessed
Explanation:
They are particular solids.