Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

Answer: I think it is amount of rainfall
Explanation:
The answer it is most likely to be is b lol
Non polarcompound I think so
The composite material is composed of carbon fiber and epoxy resins. Now, density is an intensive unit. So, to approach this problem, let's assume there is 1 gram of composite material. Thus, mass carbon + mass epoxy = 1 g.
Volume of composite material = 1 g / 1.615 g/cm³ = 0.619 cm³
Volume of carbon fibers = x g / 1.74 g/cm³
Volume of epoxy resin = (1 - x) g / 1.21 g/cm³
a.) V of composite = V of carbon fibers + V of epoxy resin
0.619 = x/1.74 + (1-x)/1.21
Solve for x,
x = 0.824 g carbon fibers
1-x = 0.176 g epoxy resins
Vol % of carbon fibers = [(0.824/1.74) ÷ 0.619]*100 =<em> 76.5%</em>
b.) Weight % of epoxy = 0.176 g epoxy/1 g composite * 100 = <em>17.6%</em>
Weight % of carbon fibers = 0.824 g carbon/1 g composite * 100 = <em>82.4%</em>