Since the nucleophile is the actual attacking molecule or molecule that starts the reaction and allows for further steps in the mechanism to occur, it is the limiting reagent, as based on the amount of the nucleophile you have, the reaction will tend to proceed until you run out. The excess would be the sodium hydroxide, it is union part of the solution.
To determine the absolute pressure of this gas, all you need to do is to add the value of atmospheric pressure and the value of gage pressure.
Atmospheric pressure is equivalent to 100 kPa.
Gage pressure is 276 kPa.
Then, we add both values.
N = 100 kPa + 276 kPa
N = 376 kPa
The absolute pressure of this gas is 376 kPa.
Hope this helps :)
Answer:
44 g oxygen are needed.
Explanation:
Given data:
Mass of oxygen needed = ?
Mass of ammonia = 18.2 g
Solution:
Chemical equation:
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will calculate the number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 18.2 g/ 17 g/mol
Number of moles = 1.1 mol
Now we will compare the moles of ammonia with oxygen from balance chemical equation.
NH₃ : O₂
4 : 5
1.1 : 5/4×1.1 = 1.375 mol
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 1.375 mol × 32 g/mol
Mass = 44 g
Explanation:
because there are 4 Iodines on the left, we'll put. 4 in front of NaI to balance it. This would result in 4 Na on the left, so we'll put a 2 in front of Sodium Sulfate to balance the right side. Now we have 4 Na and I on both side, as well as 2 Sulfate on both sides. Pb is already balanced. The equation is now complete.
Explanation:
Given that,
Volume of a hallow glass sphere is 350 mL
Specific gravity is 1.252
We need to find the weight of the sphere. The ratio of density of substance to the density of water is called specific gravity.
The density of water is 1 g/mL

We know that,
1 pound = 453.592 grams
So,
m = 0.97 lbs
So, the weight of the sphere is 0.97 lbs or 0.97 pounds.